Creating DNA From Scratch For DNA-Based Data Storage

SDDEC22-12

Team Members: Nathan Armstrong, Lucas Heimer, Connor Larson, Kyle Riggs, Brandon Stark

Faculty Advisor: Meng Lu

Client: Iowa State University

Problem Statement

- Problem: Increasing demand for data storage with limited space
- Solution: Printed DNA data sequences for data storage

Functional Requirements

- Method to selectively pass UV light to channel (LCD)
- Control of all components from single program
- Capacity to perform DNA synthesis

Engineering Constraints

- Accuracy of DNA sequences
- Control of LCD via HDMI
- Ability to dynamically change matrix sizes
- Pressure limitation of microfluidic system

System Users & Uses

Non-Functional Requirements

- Develop new medium of data storage
- Efficient and accurate system
- Customizable options for user

Applicable Engineering Standards

IEEE 260.1 - Standard Letter Symbols for Units of Measurement **IEEE 830** - Software Requirements Specifications **IEEE 1588** - Precision Time Protocol **IEEE 802.6** - Standards for information exchange between systems **IEEE 1074 - Software Development** Life Cycle

Concept Sketch

Functional Systems

Technical Details - LCD/LED

Automated process to control when the LED light turns on/off

Technical Details - User Interface

Technical Details - Microfluidic System

- LCD screen stays on when system is on
- Secure housing on the THOR board

Testing Procedure - LCD/LED

- UV light intensity
- Heat dissipation testing
 - Different fluids Ο
 - Various glass thicknesses Ο
 - Dynamic vs. static heat dissipation
- LED trigger
- CDs with/without diffusers
- LCD resolution
- Photolithography masks

- Can be modified for user to control/automate several parts of the system
- Display matrix window to LCD w/ correct dimensions
- Pre-set DNA sequences

Testing Procedure - User Interface

- Windows Presentation Foundation real-time updates
 - Matrix dimensions
 - Cell sizes Ο
 - UI design Ο
- DNA Sequence printing
 - Breakpoints in Sequence split Ο calculation
 - Varied delays Ο

- Sequentially pumps reagents to flow channel
 - Intermediate buffer solution to clean Ο channel
- Reactions catalyzed based on state of LED source
 - Exposure time of ~25 seconds required
- All components controlled via Fluigent Library integrated into UI

Testing Procedure - Microfluidic System

- Burst pressure
- Flow rate
- Exposure time
- Time from reservoir to channel

· × · Photoresist Test # (Left \rightarrow Right) UV Light Values Parameter Measured Value ••• 3.5 Amps @ 100% **Burst Pressure** 150 mbar Flow Rate 2 3.5 Amps @ 100% 33.33 µl/s Exposure Time 3 30 s 2.625 Amps @ 75% Time from Reservoir to 20 s 4 1.75 Amps @ 50% 100 % 100% 75% 50% Channel 10 seconds 5 seconds 5 seconds 5 seconds

Test Results